String and Metric–Affine Gravity

نویسنده

  • Sergiu I. Vacaru
چکیده

We develop the method of anholonomic frames with associated nonlinear connec-tion (in brief, N–connection) structure and show explicitly how geometries with lo-cal anisotropy (various type of Finsler–Lagrange–Cartan–Hamilton geometry) can bemodeled in the metric–affine spaces. There are formulated the criteria when such gen-eralized Finsler metrics are effectively induced in the Einstein, teleparallel, Riemann–Cartan and metric–affine gravity. We argue that every generic off–diagonal metric(which can not be diagonalized by coordinate transforms) is related to specific N–connection configurations. We elaborate the concept of generalized Finsler–affinegeometry for spaces provided with arbitrary N–connection, metric and linear connec-tion structures and characterized by gravitational field strengths, i. e. by nontrivialN–connection curvature, Riemannian curvature, torsion and nonmetricity. We ap-ply a irreducible decomposition techniques (in our case with additional N–connectionsplitting) and study the dynamics of metric–affine gravity fields generating Finslerlike configurations. The classification of basic eleven classes of metric–affine spaceswith generic local anisotropy is presented. Pacs: 04.50.+h, 02.40.-k,MSC numbers: 83D05, 83C99, 53B20, 53C60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BRST–Antifield–Treatment of Metric–Affine Gravity

The metric–affine gauge theory of gravity provides a broad framework in which gauge theories of gravity can be formulated. In this article we fit metric–affine gravity into the covariant BRST–antifield formalism in order to obtain gauge fixed quantum actions. As an example the gauge fixing of a general two–dimensional model of metric–affine gravity is worked out explicitly. The result is shown ...

متن کامل

Differential Geometry - Dynamical Systems

1 We develop the method of anholonomic frames with associated nonlinear connection (in brief, N–connection) structure and show explicitly how geometries with local anisotropy (various type of Finsler–Lagrange–Cartan–Hamilton spaces) can be modelled on the metric–affine spaces. There are formulated the criteria when such generalized Finsler metrics are effectively defined in the Einstein, telepa...

متن کامل

X iv : g r - qc / 9 80 40 62 v 1 2 3 A pr 1 99 8 Multipole solutions in metric – affine gravity

Above Planck energies, the spacetime might become non–Riemannian, as it is known fron string theory and inflation. Then geometries arise in which nonmetricity and torsion appear as field strengths, side by side with curvature. By gauging the affine group, a metric affine gauge theory emerges as dynamical framework. Here, by using the harmonic map ansatz, a new class of multipole like solutions ...

متن کامل

N ov 2 00 4 Attractions of Affine Quantum Gravity ∗

All attempts to quantize gravity face several difficult problems. Among these problems are: (i) metric positivity (positivity of the spatial distance between distinct points), (ii) the presence of anomalies (partial second-class nature of the quantum constraints), and (iii) perturbative nonrenormalizability (the need for infinitely many distinct counterterms). In this report, a relatively nonte...

متن کامل

تبدیلات دوگانگی آبلی استاندارد در گرانش f(T)

According to the perturbation order, the equations of motion of low-energy string effective action are the generalized Einstein equations. Thus, by making use of the conformal transformation of  the metric tensor, it is possible to map the low-energy string effective action into f(T) gravity, relating the dilaton field to the torsion scalar. Considering a homogeneous and isotropic universe and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008